# Solubility of Nitrous Oxide in Aqueous Blends of N-Methyldiethanolamine and 2-Amino-2-methyl-1-propanol

## **Richard A. Davis\* and Brian J. Pogainis**

Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, Minnesota 55812

The solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1propanol was measured over the temperature range 10-60 °C. The total composition of the alkanolamines in water ranged from 30 to 50 mass %. The experimental results were interpreted in terms of Henry's constants.

#### Introduction

Aqueous solutions of alkanolamines have application in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. More recently, attention is drawn to blended solutions of primary or secondary and tertiary amines for the simultaneous removal of  $CO_2$  in the presence of  $H_2S$  (Chakravarty et al., 1985; Versteeg et al., 1990). One such system that has not been thoroughly investigated is the aqueous combination of the tertiary amine N-methyldiethanolamine (MDEA) and the secondary amine 2-amino-2-methyl-1-propanol (AMP). Several properties of the single amine solutions of AMP in water and MDEA in water have been reported previously in the literature (Haimour and Sandall, 1984; Versteeg and van Swaaij, 1988; Al-Ghawas et al., 1989; Bosch et al., 1990; Xu et al., 1991; Littel at al., 1992; Wang et al., 1992; Saha at al., 1993; Browning and Weiland, 1994; Rinker et al., 1995; Li and Lai, 1995). Densities and viscosities of aqueous blends of AMP and MDEA have been reported by Welsh and Davis (1995). Wang et al. (1992) reported the solubility of  $N_2O$  in aqueous blends of AMP and MDEA at 25 °C only. In this work, some additional results for density and Henry's constants for nitrous oxide solubility in aqueous blends of MDEA and AMP were determined over the temperature range of 10-60 °C. The solubility of  $N_2O$  is useful for estimating the physical solubility of  $CO_2$ in reactive solvents by analogy (Laddha et al., 1981; Haimour and Sandall, 1984; Versteeg and van Swaaij, 1988; Xu et al., 1991; Littel et al., 1992; Wang et al., 1992; Saha et al., 1993; Browning and Weiland, 1994; Rinker et al., 1995; Li and Lai, 1995). Gas solubility is important for the design of gas-treating operations and in determining other physicochemical properties of this system such as the reaction kinetics of  $CO_2$  with aqueous amine solutions.

### **Experimental Procedure**

All liquid solutions were prepared from deionized, distilled water and 99+% (mass) pure MDEA and AMP supplied by Janssen Chimica. Prepared solutions were titrated with 1 M HCl to an end point of pH 4.5 with a Mettler DL12 autotitrator (Al-Ghawas et al., 1989). All reported liquid compositions are accurate to within  $\pm 0.05$ mass %. Medical grade N<sub>2</sub>O with a purity of 99+% was used in all the solubility experiments. The solutions were degassed before each experiment by heating under vacuum.

**Density.** Experiments to determine density were performed with a calibrated 25 cm<sup>3</sup> Gay-Lussac type pycnom-

eter from Ace Glass Inc. The clean, dry pycnometer was weighed before each experiment on a Sartorius analytical balance, accurate to  $\pm 0.0002$  g. The temperature was controlled by immersing the amine solution-charged pycnometer in a constant temperature bath for at least 30 min. The temperature of the bath was measured with a Fisher Scientific calibrated mercury-filled glass thermometer. The temperature was maintained to within  $\pm 0.05$  °C of the set point. The density was found by dividing the difference in the mass of the charged and empty pycnometer by the calibrated pycnometer volume. The maximum error in the density measurements is estimated to be  $\pm 0.001$  g·cm<sup>-3</sup>.

**Solubility.** The solubility of  $N_2O$  in the aqueous amine solutions was determined by measuring the pressure change in a constant volume equilibrium cell after partially filling with a known aliquot of liquid sample. A Parr 300 mL stainless steel stirred reactor was used as an equilibrium cell. Initially, the cell was purged with humidified N<sub>2</sub>O at room temperature. The gas was then partially evacuated from the cell under vacuum to lower the initial pressure in the cell below atmospheric pressure. The closed system was allowed to reach constant pressure and temperature before a known mass (approximately 100 g) of degassed liquid was injected into the cell. The temperatures of the gas and liquid in the cell were measured with type J thermocouples to within  $\pm 0.2$  °C. The pressure of the gas phase was measured to within  $\pm 0.1$  kPa with a calibrated pressure transducer supplied from Setra. The pressure in the cell ranged from 70 to 100 kPa during all experiments. The temperature of the cell was varied from 10 to 60 °C in 10 °C increments with an electric heating mantle and refrigerating bath. The system was assumed to be at equilibrium when the temperature and pressure stopped changing after a minimum of 1 h of continuous mixing.

**Analysis.** The initial number of moles of  $N_2O$  in the equilibrium cell, before adding liquid, was calculated from the initial temperature and pressure assuming ideal gas behavior:

$$n_i = P_i V_i / RT_i \tag{1}$$

The compressibility factor for the mixtures of  $N_2O$  and  $H_2O$ in this investigation is practically unity (Z > 0.99) for the temperatures and pressures used here. The partial pressure of  $N_2O$  in the gas above the liquid was calculated assuming Raoult's law for water and amine:

$$P = P_{\rm T} - \sum_{j \neq N_2 O} x_j P_{\rm vj} \tag{2}$$

\* To whom correspondence should be addressed.

0021-9568/95/1740-1249\$09.00/0 © 1995 American Chemical Society

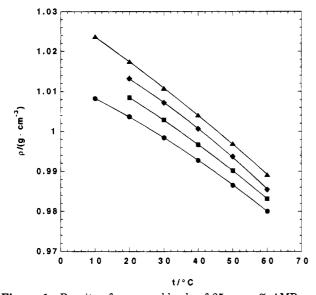



Figure 1. Density of aqueous blends of 25 mass % AMP and MDEA: ●, 5 mass % MDEA; ■, 10 mass % MDEA; ◆, 15 mass % MDEA; ▲, 20 mass % MDEA.

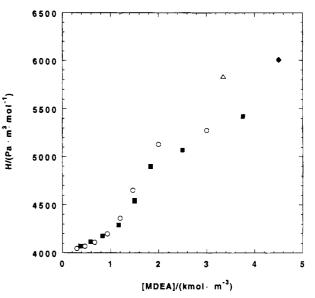
Table 1. Density of Water + AMP + MDEA Solutions

| [AMP]/<br>(mass %) | [MDEA]/<br>(mass %) | <i>t/</i><br>℃                     | ρ/<br>(g•cm <sup>-3</sup> )                                                                | [AMP]/<br>(mass %) | [MDEA]/<br>(mass %) | <i>t/</i><br>℃                   | ρ/<br>(g·cm <sup>-3</sup> )                             |
|--------------------|---------------------|------------------------------------|--------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------------------|---------------------------------------------------------|
| 25                 | 5                   | $10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60$ | $\begin{array}{c} 1.0083 \\ 1.0037 \\ 0.9985 \\ 0.9928 \\ 0.9866 \\ 0.9855 \end{array}$    | 25                 | 15                  | 20<br>30<br>40<br>50             | 1.0132<br>1.0072<br>1.0007<br>0.9937                    |
| 25                 | 10                  | 60<br>20<br>30<br>40<br>50<br>60   | $\begin{array}{c} 0.9833\\ 0.9801\\ 1.0085\\ 1.0029\\ 0.9967\\ 0.9902\\ 0.9832\end{array}$ | 25                 | 20                  | 10<br>20<br>30<br>40<br>50<br>60 | 1.0237<br>1.0174<br>1.0108<br>1.0041<br>0.997<br>0.9892 |

where  $P_{\rm T}$  is the total measured pressure,  $P_{\rm vj}$  is the vapor pressure of pure species *j* at  $T_{\rm f}$ , and  $x_j$  is the mole fraction of species *j* in the liquid. The terms representing amines in eq 2 were found to be negligible for the conditions of this investigation.

The final number of moles of  $N_2O$  in the gas phase after liquid injection was found in a similar way at each temperature. The volume occupied by the gas was taken as the difference between the initial volume of the empty cell and the volume of the liquid in the cell:

$$n_{\rm f} = P_{\rm f} (V_{\rm i} - V_{\rm l}) / RT_{\rm f} \tag{3}$$


where the liquid volume was calculated from the mass of liquid injected and the liquid density at the final temperature,  $T_{\rm f.}$ 

$$V_1 = m_1 / \varrho_1 \tag{4}$$

The total number of moles of  $N_2O$  absorbed at each final temperature was calculated from the difference between the initial and final number of moles of  $N_2O$  in the gas according to eqs 1 and 3. The concentration of dissolved gas was found from the number of moles of gas absorbed and the volume of liquid determined from the liquid density according to eq 4:

$$C = (n_i - n_f)/V_1 \tag{5}$$

The N<sub>2</sub>O solubility was interpreted in terms of Henry's law



**Figure 2.** Solubility of N<sub>2</sub>O in aqueous blends of AMP and MDEA at 25 °C:  $\blacksquare$ , [AMP]/[MDEA] = 0.2 (Wang et al., 1992);  $\diamondsuit$ , [AMP]/[MDEA] = 0.2 (this work);  $\bigcirc$ , [AMP]/[MDEA] = 0.5 (Wang et al., 1992);  $\triangle$ , [AMP]/[MDEA] = 0.5 (this work).

Table 2. Solubility of N<sub>2</sub>O in Water

| $t/^{\circ}C$ | $H/(Pa \cdot m^3 \cdot mol^{-1})$ | ref                            |
|---------------|-----------------------------------|--------------------------------|
| 25.0          | 4173                              | Haimour and Sandall (1984)     |
|               | 4132                              | Versteeg and van Swaaij (1988) |
|               | 3910                              | Al-Ghawas et al. (1989)        |
|               | 4176                              | Xu et al. (1991)               |
|               | 4120                              | Saha et al. (1993)             |
|               | 4234                              | Browning and Weiland (1994)    |
|               | 4101                              | Rinker et al. (1995)           |
|               | 4179                              | this work                      |
| 50.0          | 7407                              | Versteeg and van Swaaij (1988) |
|               | 5369                              | Al-Ghawas et al. (1989)        |
|               | 7254                              | Xu et al. (1991)               |
|               | 7214                              | Rinker et al. (1995)           |
|               | $7\overline{2}64$                 | Li and Lai (1995)              |
|               | 7260                              | this work                      |

constant for sparingly soluble gases in liquids:

$$H = P/C \tag{6}$$

where P is the partial pressure of N<sub>2</sub>O calculated according to eq 2.

### **Results and Discussion**

Density experiments were performed for aqueous amine solutions of 25 mass % AMP and 5–20 mass % MDEA over the temperature range 10–60 °C, extending the range of compositions reported previously (Welsh and Davis, 1995). The results for density are listed in Table 1 and plotted as a function of temperature in Figure 1. The maximum error in the density results was estimated to be  $\pm 0.0015$  g·cm<sup>-3</sup>.

The solubility of  $N_2O$  in aqueous AMP solutions and aqueous blends of AMP and MDEA is reported here for liquid phase compositions and temperatures beyond the range of those reported previously in the literature (Bosch et al., 1990; Xu et al., 1991; Littel et al., 1992; Wang et al., 1992; Saha et al., 1993; Li and Lai, 1995). The experimental procedure for determining the solubility was validated by comparing our results for the solubility of  $N_2O$  in water with recently reported values listed in Table 2. With the exception of the results of Al-Ghawas et al. (1989), our results agree within 1% of the mean value at each temJournal of Chemical and Engineering Data, Vol. 40, No. 6, 1995 1251

| Table 3. Solubility of N <sub>2</sub> O in A | queous Blends of AMP and MDEA |
|----------------------------------------------|-------------------------------|
|----------------------------------------------|-------------------------------|

| [AMP]/<br>(mass %) | [MDEA]/<br>(mass %) | t/°C       | H/<br>(Pa·m <sup>3</sup> ·mol <sup>-1</sup> ) | [AMP]/<br>(mass %) | [MDEA]/<br>(mass %) | t/°C | H/<br>(Pa·m <sup>3</sup> ·mol <sup>-1</sup> ) | [AMP]/<br>(mass %) | [MDEA]/<br>(mass %) | t/°C | H/<br>(Pa·m <sup>3</sup> ·mol <sup>-1</sup> ) |
|--------------------|---------------------|------------|-----------------------------------------------|--------------------|---------------------|------|-----------------------------------------------|--------------------|---------------------|------|-----------------------------------------------|
| 0                  | 50                  | 10         | 4075                                          | 25                 | 5                   | 10   | 3771                                          | 25                 | 25                  | 10   | 4503                                          |
|                    |                     | 20         | 5258                                          |                    |                     | 20   | 4938                                          |                    |                     | 20   | 5478                                          |
|                    |                     | 30         | 6481                                          |                    |                     | 30   | 6210                                          |                    |                     | 30   | 6481                                          |
|                    |                     | 40         | 7713                                          |                    |                     | 40   | 7656                                          |                    |                     | 40   | 7562                                          |
|                    |                     | 50         | 9119                                          |                    |                     | 50   | 8952                                          |                    |                     | 50   | 7852                                          |
|                    |                     | 60         | 10451                                         |                    |                     | 60   | 10918                                         |                    |                     | 60   | 8639                                          |
| 10                 | 40                  | 10         | 4379                                          | 25                 | 10                  | 10   | 4019                                          | 30                 | 20                  | 10   | 4614                                          |
|                    |                     | 20         | 5667                                          |                    |                     | 20   | 5172                                          |                    |                     | 20   | 5554                                          |
|                    |                     | 30         | 6534                                          |                    |                     | 30   | 6392                                          |                    |                     | 30   | 6376                                          |
|                    |                     | 40         | 7765                                          |                    |                     | 40   | 7588                                          |                    |                     | 40   | 7178                                          |
|                    |                     | 50         | 8860                                          |                    |                     | 50   | 8524                                          |                    |                     | 50   | 7911                                          |
|                    |                     | <b>6</b> 0 | 9911                                          |                    |                     | 60   | 9314                                          |                    |                     | 60   | 8574                                          |
| 15                 | 15                  | <b>20</b>  | 5239                                          | 25                 | 15                  | 20   | 5345                                          | 40                 | 10                  | 10   | 4855                                          |
|                    |                     | 30         | 6759                                          |                    |                     | 30   | 6465                                          |                    |                     | 20   | 5718                                          |
|                    |                     | 40         | 8446                                          |                    |                     | 40   | 7494                                          |                    |                     | 30   | 6461                                          |
|                    |                     | 50         | 10162                                         |                    |                     | 50   | 8398                                          |                    |                     | 40   | 7213                                          |
|                    |                     | 60         | 12206                                         |                    |                     | 60   | 9163                                          |                    |                     | 50   | 7869                                          |
| 20                 | 30                  | 10         | 4465                                          | 25                 | 20                  | 10   | 4388                                          |                    |                     | 60   | 8412                                          |
|                    |                     | 20         | 5530                                          |                    |                     | 20   | 5448                                          | 50                 | 0                   | 10   | 4625                                          |
|                    |                     | 30         | 6318                                          |                    |                     | 30   | 6519                                          |                    |                     | 20   | 5478                                          |
|                    |                     | 40         | 7249                                          |                    |                     | 40   | 7497                                          |                    |                     | 30   | 6002                                          |
|                    |                     | 50         | 7978                                          |                    |                     | 50   | 8244                                          |                    |                     | 40   | 6667                                          |
|                    |                     | 60         | 8968                                          |                    |                     | 60   | 9043                                          |                    |                     | 50   | 7187                                          |
|                    |                     |            |                                               |                    |                     | -    |                                               |                    |                     | 60   | 7743                                          |

Table 4. Henry's Constant for  $N_2O$  Solubility in 50 mass % MDEA in  $H_2O$  at 25  $^\circ C$ 

| $H/(Pa \cdot m^3 \cdot mol^{-1})$ | ref                            |
|-----------------------------------|--------------------------------|
| 5400                              | Haimour and Sandall (1984)     |
| 5229                              | Al-Ghawas et al. (1989)        |
| 5850                              | Browning and Weiland (1994)    |
| 5740                              | this work (interpolated value) |
|                                   |                                |

perature. Our results for N<sub>2</sub>O solubility in aqueous blends of AMP and MDEA are listed in Table 3. The maximum error in these results for solubility was estimated to be  $\pm 3\%$ .

Our values for N<sub>2</sub>O solubility in aqueous 50 mass % MDEA agree with the trends for increasing MDEA composition of Li and Lai (1995) and Rinker et al. (1995). The results for N<sub>2</sub>O solubility in aqueous 50 mass % MDEA at 25 °C agree with those reported by Browning and Weiland (1994), Haimour and Sandall (1984), and Al-Ghawas et al. (1989), listed in Table 4. Interpolated values for Henry's constants were found by a linear least squares fit of the results to an Arrhenius function of temperature as predicted by the Clausius-Clapeyron equation (Astarita et al., 1983):

$$\ln(H) = a + b/T \tag{7}$$

Our results for the solubility of  $N_2O$  in aqueous 50 mass % AMP are consistent with the trend of decreasing solubility with increasing AMP composition at low temperatures (10-30 °C) as reported by Bosch et al. (1990), Xu et al. (1991), Littel et al. (1992), Saha et al. (1993), and Li and Lai (1995). However, at higher temperatures, our results indicate an increase in N<sub>2</sub>O solubility with increasing AMP concentration when compared with the data of Xu et al. (1991) and Li and Lai (1995). If the water vapor pressure correction of eq 2 is ignored, there appears to be closer agreement over the entire range of temperatures, indicating a possible disparity between the methods used to account for water in the gas phase at equilibrium. Interpolated values from this work for  $N_2O$  solubility in AMP + MDEA +  $H_2O$  blends at 25 °C are consistent with the experimental results of Wang et al. (1992), as shown in Figure 2.

#### **Literature Cited**

- Al-Ghawas, H. A.; Hagewiesche, D. P.; Ruiz-Ibanez, G. R.; Sandall, O. C. Physico-Chemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. Data 1989, 34, 385-391.
- Astarita, G.; Savage, D. W.; Bisio, A. Gas Treating with Chemical Solvents; Wiley: New York, 1983; p 37. Bosch, H.; Versteeg, G. F.; van Swaaij, W. P. M. Kinetics of the
- Bosch, H.; Versteeg, G. F.; van Swaaij, W. P. M. Kinetics of the Reaction of CO<sub>2</sub> with the Sterically Hindered Amine 2-Amino-2methylpropanol. *Chem. Eng. Sci.* **1990**, 45 (5), 1167-1173.
  Browning, G. J.; Weiland, R. H. Physical Solubility of Carbon Dioxide
- Browning, G. J.; Weiland, R. H. Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy. J. Chem. Eng. Data 1994, 39, 817–822.
- Chakravarty, T.; Phukan, U. K., Weiland, R. H. Reaction of Acid Gases with Mixtures of Amines. Chem. Eng. Prog. 1985, 81 (4), 32-36.
- Haimour, N.; Sandall, O. C. Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine. *Chem. Eng. Sci.* 1984, 39 (12), 1791-1796.
  Laddha, S. S.; Diaz, J. M.; Danckwerts, P. V. The Nitrous Oxide
- Laddha, S. S.; Diaz, J. M.; Danckwerts, P. V. The Nitrous Oxide Analogy: the Solubilities of Carbon Dioxide and Nitrous Oxide in Aqueous Solutions of Organic Compounds. *Chem. Eng. Sci.* 1981, 36, 228–229.
- Li, M.; Lai, M. Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol + Water). J. Chem. Eng. Data 1995, 40, 486-492.
- Eng. Data 1995, 40, 486-492.
  Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity Data for the Absorption of COS, CO<sub>2</sub>, and N<sub>2</sub>O in Amine Solutions. J. Chem. Eng. Data 1992, 37, 49-55.
  Rinker, E. B.; Ashour, S. S.; Sandall, O. C. Kinetics and Modeling of
- Rinker, E. B.; Ashour, S. S.; Sandall, O. C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of N-methyldiethanolamine. *Chem. Eng. Sci.* 1995, 50 (5), 755-768.
- Saha, A. K.; Bandyopadhyay, S. S.; Biswas, A. K. Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> in Aqueous Solutions of 2-Amino-2methyl-1-propanol. J. Chem. Eng. Data 1993, 38, 78-82.
- Versteeg, G. F.; Kuipers, J. A. M.; van Beckum, F. P. H.; van Swaaij, W. P. M. Mass Transfer with Complex Reversible Chemical Reactions-II. Parallel Reversible Chemical Reactions. *Chem. Eng. Sci.* **1990**, 45 (1), 183-197.
- Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity of Acid Gases (CO<sub>2</sub>, N<sub>2</sub>O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988, 33, 29-34.
  Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N<sub>2</sub>O in
- Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N<sub>2</sub>O in Alkanolamines and in Mixed Solvents. *Chem. Eng. J.* **1992**, 48, 31– 40.
- Welsh, L. M.; Davis, R. A. Density and Viscosity of Aqueous Blends of N-Methyldiethanolamine and 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 1995, 40, 257-259.
- Xu, S. Otto, F. D.; Mather, A. E. Physical Properties of Aqueous AMP Solutions. J. Chem. Eng. Data 1991, 36, 71-75.

Received for review May 8, 1995. Revised July 21, 1995. Accepted August 25, 1995.<sup>\*</sup> This work was sponsored by a grant from the University of Minnesota Graduate School.

#### JE950112J

<sup>\*</sup> Abstract published in Advance ACS Abstracts, October 1, 1995.